Unit 103 Stellar Evolution: Star's Life Cycle

Goal:

Create a diagram to help you understand how Stars lives lead to elements we have on Earth.

Brain Starter:

How do we know what's in a Star?

How do we know what's in a Star?

Electromagnetic emission and absorption spectra are used to determine:

- a star's composition and,
- motion and distance (Doppler & Hubble)

Stellar Evolution Flow Chart

Fill out digital version

OR

 Create your own to match the slides and your note-taking style

So, what is a star?

- A hot ball of gas
- Hydrogen fusing into helium at its core.
- ► Hydrogen gone?
 - ▶ Fuse helium
 - Make carbon, oxygen, iron and nickel.
- Battle between gravity and gas pressure
 - Known as equilibrium
 - Crucial to understand how stars live and die.

Hydrogen fusion

nu·cle·o·syn·the·sis

/ n(y)ooklēō sinTHəsəs/

noun ASTRONOMY

the cosmic formation of atoms more complex than the hydrogen atom.

Summary of a Star's "Life Cycle"

Main sequence

- 98% of stars
- our sun
- Fusion

Hydrogen (H) into Helium

Life Cycle of a Star

Vocab Review

Red Giant – a large reddish star late in it's life that converts helium into carbon or

oxygen

Vocabulary Review

White Dwarf – a small, dense star that remains after a red giant converts all of its helium into carbon or oxygen

Black Dwarf

- When a white dwarf cools and no longer emits significant heat or light.
- Tens to hundreds of billions of years to cool
- The Universe hasn't been around that long
 - the oldest stars: 10 20 billion years old
- Therefore there are no black dwarfs yet, but there will be in the future.

Main sequence

- 2% of stars
- Fusion Hydrogen (H) into Helium

Helium fuses to Iron and Nickel

- Runs out of fuel
- gravity wins

Vocab Review

- Red Supergiant -
- a large star late in its life cycle
- converts its helium into iron and nickel

Red Super Giant

- Implodes under gravity
- Expands ...like an explosion
- Elements Larger than Iron!!!

Supernova

- These have been observed!
- Supernova explosions are relatively rare events in our own galaxy, happening once a century or so on average.
- In 1987, there was a supernova explosion in the Large Magellanic Cloud, a companion galaxy to the Milky Way. Supernova 1987A,

which is shown below:

dense core remaining

Two pathways

- There are two possible results of the supernovas:
 - Neutron Star

or

▶ Black hole

Vocab Review

Neutron Star – a small, dense dead star that can remain after a supernova

Vocab Review

Black Hole - Extremely massive and dense object; Light cannot escape its gravity

The Event Horizon Telescope collaboration, which released the world's first image of a black hole in 2019, unveiled a new view on Wednesday showing how the object at the center of the M87 galaxy looks in polarized light.

EHT Collaboration

March 2021: Messier 87 Black Hole

Summary of a Star's "Life Cycle"

